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Moments of a set

Given a set K ⊂ Rn, its moments are given by

yα =
∫
K
xαdx, ∀α ∈ Nn

where dx is the Lebesgue (uniform) measure

and xα =
∏n
k=1 x

αk
k

Inverse problem: given sequence y, reconstruct set K

Chebyshev, Markov (1883), Hamburger, Stieltjes (n = 1)

Hadamard’s well-posedness (1902): existence, uniqueness

and continuous dependence on data of a solution



Tomography

Tomographic measurements of a body of constant density
can be converted into moments, using the Radon transform

gK(t, θ) =
∫
K
δ(t− x1 cos θ − x2 sin θ)dx

which is the line integral projection of K at the angle θ

It holds∫ T
−T gK(t, θ)tkdt =

∫ T
−T (x1 cos θ + x2 sin θ)kdx

=
∑

α1+α2=k

(
k
α1

)
cosα1(θ) sinα2(θ)yα

Given line projections of K at d+ 1 distinct angles,
we can determine all the moments yα of order up to d



Potential theory

Measurements of exterior gravitational field (or magnetic field,
or thermal radiation) induced by a body of uniform mass can be
converted into moments

Vector field f(x) = ∇φ(x) corresponds to analytic function

f(z) =
∂φ

∂x1
+ i

∂φ

∂x2

where z = x1 + ix2, satisfying

f(z) = 2i
∫
K

dw

z − w
= 2i

∞∑
k=0

z−(k+1)fk

with harmonic moments

fk =
∫
K
zkdx



Uniqueness in the plane (n = 2)

A domain K is starlike with respect to a point P

if it contains the chord PQ for every point Q ∈ K

Novikov (1938): a starlike domain is uniquely specified

by its moments

Sakai (1978) constructed two distinct domains bounded by

piecewise circular arcs with equal moments

Brodsky, Gabrielov, Strakhov (1985) constructed two distinct

simply connected polygons with equal moments

Explicit counterexamples are scarce and complicated



Planar polygons

Davis (1977): a triangle is uniquely determined

by its moments of up to order 3

Milanfar, Verghese, Karl, Willsky (1995): vertices of a simply

connected n-gon are uniquely determined by moments of up to

order 2n− 3

Golub, Milanfar, Varah (1999): explicit numerical linear algebra

algorithms on Hankel matrices

If the polygon is convex it is uniquely specified by its moments



Quadrature formulas

Connection with quadrature formulas: Motzkin, Schoenberg (1955)
proved that given any function f analytic in a triangle T , the
integral over T of the second derivative f ′′ is proportional to the
second divided difference of f with respect to vertices of T

Davis (1977) generalized this to a polygon P with vertices bk:∫
P
f ′′(x)dx =

n∑
k=1

akf(bk)

where constants ak depend on xk but not on f

Quadrature formula: given ak, bk we want to find left-hand side

Inverse problem: f(x) = xα so moments appear in left-hand side
and unknowns ak, bk appear in right-hand side



Quadrature domains

Bounded planar domain K such that there exists

an atomic measure µ supported in K such that

∫
K
f(x1 + ix2)dx =

∫
K
fdµ =

m∑
k=1

nk−1∑
j=0

akjf
(j)(bk)

where bk ∈ K are the quadrature nodes

and f is any analytic integrable function in K

A quadrature domain is described by a polynomial sublevel set

K = {x ∈ R2 : g(x) > 0}

where the degree of g(x) in each variable separately is equal to

the number of points N =
∑m
k=1 nk in the support of µ



Moments to quadrature domains

A quadrature domain of order N is uniquely specified
by its moments up to order 2N

For example, an ellipse of uniform mass is determined
by 5 moments

A cardioid or a lemniscate is determined by 14 moments



Reconstructing quadrature domains and archipelagos

Tools from complex analysis were used by Golub, Gustafsson,
He, Milanfar, Putinar, Varah (2000) to reconstruct exactly a
quadrature domain K given its complex moments∫

K
zα1z̄α2dxdy

and the Taylor expansion at infinity of the exponential transform

E(w, w̄) = exp

(
−

1

π

∫
K

dxdy

(z − w)(z̄ − w̄)

)
Roughly speaking, this is a reduction to the univariate case

Gustafsson, Putinar, Saff, Stylianopoulos (2008) extend these
methods to reconstruct approximately what they call an archipelago,
a finite union of mutually disjoint bounded Jordan domains



General semialgebraic sets

Quadrature domains are planar semialgebraic sets

with a very particular structure

We would like to solve the shape reconstruction problem

for a general basic semialgebraic set

K = {x ∈ Rn : gk(x) ≥ 0, k = 1, . . . ,m}

where gk(x) are polynomials to be found, given moments of K

If the original K is not basic semialgebraic, we would like

to approximate it with a basic semialgebraic set
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Moments and measures

In this work we use the algebraic moments

yα =
∫
K
xαdµ(x), ∀α ∈ Nn

If these relations are satisfied, we say that sequence y

has representing measure µ supported on K

Inverse problem: given y, find µ and its support K



SDP conditions

Given a sequence y, define the moment matrix Md(y) of order d

with entries indexed by multi-indices β (rows) and γ (columns)

[Md(y)]β,γ = yβ+γ, |β|+ |γ| ≤ 2d

which are linear in y

Necessary condition: if y has a representing measure µ on Rn

then Md(y) � 0 ∀d

Sufficient condition (Berg 1987): if |yα| ≤ 1 ∀α and Md(y) � 0

∀d, then y has a representing measure µ on [−1,1]n



SDP conditions

Given a sequence y and a polynomial g(x) =
∑
α gαx

α, define the

localising matrix Md(gy) of order d with entries

[Md(gy)]β,γ =
∑
α
gαyα+β+γ, |α|+ |β|+ |γ| ≤ 2d

Let K = {x ∈ Rn : gk(x) ≥ 0, ∀k} be compact basic semialgebraic

with {x : gk(x) ≥ 0} compact for some k

Necessary condition: if y has a representing measure µ with

support in K, then Md(y) � 0, Md(gky) � 0 ∀k ∀d

Sufficient condition (Putinar 1993): if Md(y) � 0, Md(gky) � 0

∀k ∀d then y has a representing measure on K



SDP formulation

Define the finite-dimensional convex semialgebraic set

Kd = {y ∈ Rrd : Md(y) � 0, Md(gky) � 0, k = 1, . . . ,m}

in the rd-dimensional space of moments up to degree 2d

Theorem (Lasserre 2001): Sequence y has a representing

measure µ supported in K if and only if Kd 6= ∅ ∀d



Application in global polynomial optimization

Given a polynomial g(x) =
∑
α gαx

α and a sequence y
define L(gy) =

∑
α gαyα as a linear function of g

Consider the nonconvex polynomial optimization problem

g∗ = minx g0(x)
s.t. x ∈ K = {x ∈ Rn : gk(x) ≥ 0, k = 1, . . . ,m}

and the corresponding hierarchy of convex SDP relaxations

g∗d = miny L(g0y)
s.t. y ∈ Kd = {y ∈ Rrd : Md(y) � 0,

Md(gky) � 0, k = 1, . . . ,m}

Theorem (Lasserre 2001): g∗1 ≤ g
∗
2 ≤ · · · g

∗
∞ = g∗

Use measure supported on variety of globally optimal solutions



Shape reconstruction

For polynomial optimization, polynomials gk are given

and moments y are unknown

miny L(g0y)
s.t. y ∈ Kd = {y ∈ Rrd : Md(y) � 0,

Md(gky) � 0, k = 1, . . . ,m}

For shape reconstruction, moments y are given

and polynomials gk are unknown

ming L(g0y)
s.t. y ∈ Kd = {y ∈ Rrd : Md(y) � 0,

Md(gky) � 0, k = 1, . . . ,m}



Shape reconstruction

For polynomial optimization, polynomials gk are given

and moments y are unknown

miny L(g0y)
s.t. y ∈ Kd = {y ∈ Rrd : Md(y) � 0,

Md(gky) � 0, k = 1, . . . ,m}

For shape reconstruction, moments y are given

and polynomials gk are unknown

ming L(g0y)
s.t. Md(gky) � 0, k = 1, . . . ,m



Reconstruction of a polynomial sublevel set

In the simplest case

K = {x ∈ Rn : f(x) =
∑
α
fαx

α ≥ 0}

is a single polynomial sublevel set

K is the union of the closure of connected components of
open set {x : f(x) > 0} and polynomial f vanishes along ∂K

Assume K is compact

Our inverse problem: given y, find f

Our solution: hierarchy of SDP problems whose sequence of
optimal solutions converges to f



Hierarchy of SDP problems

Given x0 ∈ intK, we can enforce the normalization constraint

g(x0) =
∑
α
gαx

α
0 = 1

Consider the hierarchy of SDP problems

g∗d = arg ming L(gy)
s.t. Md(gy) � 0

g(x0) = 1

where the unknown are coefficients of a degree 2d polynomial g∗d

Theorem: K∗d = {x : g∗d(x) ≥ 0} ⊂ K = {x : f(x) ≥ 0}

Theorem: lim
d→∞

g∗d = f



Duality

The primal SDP problem reads

g∗d = min
∑
α gαyα

s.t.
∑
α gαMd(x

αy) � 0∑
α gαx

α
0 = 1

and its dual SDP problem reads

σ∗d = max γ
s.t. γxα0 +

∫
K x

ασ(x)dµ =
∫
K x

αdµ

with unknown scalar γ and polynomial sum-of-squares σ(x)

Using conic complementarity, we can prove that

lim
d→∞

∫
K
g∗dσ
∗
ddµ = 0

and hence that σ∗d(x) tends to a polynomial
non-negative everywhere but vanishing on K
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Interval

Uniform measure on K = [0,1] ⊂ R has moments

yα =
∫ 1

0
xαdx =

[
xα+1

α+ 1

]1

0
=

1

α+ 1

We try to model K as K∗d = {x : g∗d(x) ≥ 0} ⊂ K
for increasing values of degree d = deg g∗d(x) and

for increasing values of order D in the SDP hierarchy

In black we represent g∗d(x)

In red we represent non-negative polynomial σ∗d(x)

which should be as small as possible in K
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Union of two intervals

Uniform measure on K = [−1,−1
2] ∪ [1

2,1] ⊂ R has moments

yα =
∫ 1

0
xαdx =

−(−1)α+1 + (−1
2)α+1 − (1

2)α+1 + (1)α+1

α+ 1

y = [1,0,
7

12
,0,

31

80
,0,

127

448
, · · ·]
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Observations

Already for univariate problems severe oscillations occur

when hierarchy order D increases

We should first look at lower degree models, i.e. d small

No significant improvement when D ≥ 10 but prior experiments

on volume computation indicate that this due to the choice of

polynomial basis

For instance, Chebyshev basis on [−1,1] allows

much more accurate models for 10 ≤ D ≤ 100



Concluding remarks

In theory we have convergence to a valid defining polynomial

In practice numerical behavior is disappointing

Key tuning parameters:
• choice of objective function
• choice of dehomogenization constraint

Instead of minimizing Ly(g) =
∫
K g(x)dµ(x) we tried Ly(g2) =∫

K g
2(x)dµ(x) but it does not significantly reduce the oscillations

Should we try to minimize
∫
K ‖∇g(x)‖2dµ(x) inspired by PDE

Dirichlet’s problem ? Solution should be as smooth as possible

What is the connection with quadrature domains ?


